
An oversimpli�ed introduction to C++

23rd October 2014

2

Contents

1 Why C++ - essential di�erences from C 5

1.1 Introduction . 5

1.2 The need for object oriented programming (OOP) 5

1.3 Why C with a ++? . 7

1.4 Some features of C++ di�erent from C 7

1.4.1 Two currently used versions of C++ 7

1.4.2 Stream I/O . 8

1.4.2.1 Stream I/O on the console and keyboard . . . 9

1.4.2.2 Redirection of cout, cerr and cin 10

1.4.2.3 Stream I/O on �les 11

2 OOP and the concept of classes and objects 13

2.1 Object oriented programmes (OOP) 13

2.1.1 Classes and objects . 14

2.1.2 Constructors and destructors 21

2.1.3 Operators . 23

2.1.4 Inheritance . 26

3 Miscellaneous topics 29

3.1 Passing variables by reference 29

3.2 Using openmp for parallelization 31

3.2.1 Not all programmes can be parallelized 32

3.2.2 MPI versus OpenMP 32

3.2.3 Using OpenMP with gcc and g++ 33

3

4 CONTENTS

Chapter 1

Why C++ - essential di�erences

from C

1.1 Introduction

C++ is a programming language, just like FORTRAN, C, Pascal, BASIC,

etc. It is more of a high level language than C, but retains all the `low

level' features of that language. So, its exact `level' is somewhat suspect!

The computer, of course, simply does not care. It changes internal switches

according to `OP Codes' (machine language) and has no idea why it is doing

what it does. All high level languages are just for the convenience of us

humans.

1.2 The need for object oriented programming

(OOP)

The fastest programmes are written in assembly language. There was a time

when that was a big di�erence. Computers are much faster nowadays and

compilers are extremely complex. These wonderful programmes come with

optimisers which generate code of such e�ciency that it is almost impossible

5

6 CHAPTER 1. WHY C++ - ESSENTIAL DIFFERENCES FROM C

to do better by writing programmes directly in assembly language1. As far

as the di�erent languages are concerned, as long as we use good compilers,

the speeds will be e�ectively the same2. So for the purpose of performance,

OOP languages like C++ are not really needed.

The real need is in the way the human brain works. `Unstructured' pro-

grammes, like those written in assembly language, older varieties of FOR-

TRAN (FORTRAN-4), etc. soon become full of so many jumps (GO TO)

that after about 2000 lines of code, it becomes very di�cult for humans

to keep track, particularly if a project is shelved for some time and taken

up later. `Structured' code, like that using C++, FORTRAN-77 (provided

proper use is made of the while and for loops), etc., can be handled over

a 25,000 line size, because logically linked regions are clearly demarcated in

these languages. When code becomes much larger (maybe a million lines?)

two fundamental barriers come into play. Firstly, our brains fail to keep

the whole logic inside while developing the code - a level of abstraction and

encapsulation is needed, with a clear hierarchy of constructs. Secondly, a

team of programmers is now needed, each working on a di�erent aspect of

the problem. Clashes in naming and programming styles and approaches are

1Why should we learn assembly language then? The �rst reason is to be able to have
complete control over the exact steps that the computer executes which is important in
the case of timing loops, data acquisition, control and communication with other devices.
The second reason - it makes us learn how the computer does its work and enables us to
handle its internals! The third reason - to write compilers.

2However, interpreters are much, much slower. Languages like Tcl/Tk, Python, BASIC
and many others, which commonly use interpreters, execute each command directly from
the source code after compiling them (interpreting) line by line at the time of execution,
and tend to be about a hundred times slower. Perl is an interpreter which keeps the
compiled code ready for re-use during loops and discards it only on exit. It is as slow as
any interpreted language during the �rst run, but is quite fast while executing repeated
passes inside loops. Java uses an interesting concept called byte-code. The idea is to
imagine a `virtual machine' with a standardised set ofOP-codes which are called byte-codes.
Programmes written is Java are normally (OP-code compilers are also available) compiled
into byte-codes for this virtual machine, which is the same across all platforms (di�erent
CPUs, di�erent operating systems). During execution, there is a Java virtual machine
which actually interprets these byte-codes into proper OP-codes on the host machine and
runs them. Since the �rst level of compilation (into byte-code) has already simpli�ed the
programme substantially, the speed is not a�ected as badly as with pure interpreters.
Java byte-code programmes run about twenty �ve times slower than genuinely compiled
programmes. So this is a trade-o� between speed and portability.

1.3. WHY C WITH A ++? 7

bound to occur. Object oriented programmes allow us to work under these

situations. It is always better to develop programmes in an object oriented

manner if we plan to use the code later or to let others use it.

1.3 Why C with a ++?

C++ is a superset of C, so any C programme is automatically a C++ pro-

gramme also. All the control structures (if, while, for, switch, etc.) remain

the same, functions and subroutines work as usual and in this manual we

will deal with the new features only. The �rst important di�erence in a

C++ programme is that whereas in the case of a proper C programme (fully

POSIX compliant) all the variables have to be declared before the �rst line

of executable code, in C++ variables can be declared anywhere within the

code. Memory allocation is dynamic as and when needed. Thus the following

code is wrong in C but correct in C++:3

printf(�Give me the dimensions of the matrix: �);

scanf(�%d%d�,&i,&j);

float halum[i][j];

Instead of using an extension of .c with the �lename, we generally use .C

or .cpp with C++ programmes. For compilation the g++ command is used

instead of gcc4.

1.4 Some features of C++ di�erent from C

1.4.1 Two currently used versions of C++

The older version of C++ has been superseded by the newer one. In the old

version, the headers had .h extensions. Now these are not used. Instead of

3The newer versions of the gcc compiler will allow declarations inside C programmes -
but this is not strict C - do not take this behaviour for granted.

4gcc can also compile C++ code, but many of the useful features will be absent because
`C++ binding' (what is this?-AC) will not be used.

8 CHAPTER 1. WHY C++ - ESSENTIAL DIFFERENCES FROM C

#include <iostream.h> we now have to use #include <iostream>. When

we want to use our familier C headers, we may use the old ones, like <stdio.h>,

<math.h>, <string.h>, <stdlib.h> or their newer versions: <cstdio>, <cmath>,

<cstring>, <cstdlib>. If we use functions included in the <cmath> header,

we no longer have to include the linker directive -lm in the newer version.

For some of the headers, however,5 there are no proper C++ versions yet

and we have to use the .h extension.

Another signi�cant di�erence is the widespread use of namespaces. A

namespace is a way of allowing di�erent functions to have the same names.

By placing these functions in di�erent namespaces, ambiguity can be re-

moved. Constructs like cout and cin have to be called with reference to

their namespace, which is std. Thus cout becomes std::cout in the new

version. In order to avoid this clumsy reference, we generally declare at

the very outset that all the names that we will use will be with reference

to the std namespace. This is done by including a line containing using

namespace std; just after the headers.

1.4.2 Stream I/O

C is such a simple and rudimentary language that it does not have any

built-in input/output capability! We have to use separate functions like

printf() and scanf() for this purpose6. C++ does have built-in support

for I/O. The idea of a stream is as if there is a stream of data �owing along.

You may insert data into the stream by using the insertion operator <�< and

extract data from the stream with the extraction operator >�>. In order to

understand this properly we have to wait till we discuss classes and objects,

but for now we need only remember that with the inclusion of <iostream>

we have automatic access to three streams, cin, cout and cerr.

5Mainly those dealing with deeper system calls - here C reigns supreme!
6These are functions because they have to be declared in header �les and have to be

called with parameters within brackets. Thus pow(x,y) is a function whereas x*x is not
- it is a part of the language syntax.

1.4. SOME FEATURES OF C++ DIFFERENT FROM C 9

1.4.2.1 Stream I/O on the console and keyboard

cin, cout and cerr correspond to the �les stdin, stdout and stderr of

C. The destination of the cout and cerr streams is the terminal and the

source of the input stream cin is the keyboard7. The other very useful fea-

ture of these streams is that they are intelligent, that is, they can analyse

the contents and take care of formatting automatically without any explicit

instruction8. Below is a small example:

#include <iostream>

using namespace std;

int main(void)

{

float x = 4.3;

int i = 2;

cout <�< �See the fun :) � <�< x <�< �\t� <�< i <�< endl;

return(0);

}

As you can see, we are using the insertion operator repeatedly to insert

di�erent kinds of entities into the cout stream, which ultimately shows them

7Unless they are redirected.
8There are ways of changing formats if we need to, see iomanip.

10 CHAPTER 1. WHY C++ - ESSENTIAL DIFFERENCES FROM C

in readable form on the terminal9.

For reading in data, cin is intelligent enough to convert the data on the

input stream to the correct format depending on where (which kind of vari-

able) the extraction operator is going to place the data. Thus:

cin >�> x >�> i;

would cause what you type on the keyboard to be converted to a float

for x and an int for i.

1.4.2.2 Redirection of cout, cerr and cin

When you have a working programme with outputs on the console, you may

want to divert the output to a �le instead of seeing it on the console. This

can be done easily from the command prompt. Thus:

$./bhutum > bhutum.out

will run bhutum and redirect its console output to bhutum.out. In a sililar

manner:

$./bhutum < bhutum.in

will cause bhutum to take its input from the �le bhutum.in instead of from

the keyboard. If we want to keep the data that is already in a �le and append

to it instead of overwriting, we us the syntax:

9You could use �\n� instead of endl (no quotes required with endl) but there is a
di�erence. Normally whatever goes into the stream is not shown immediately (The stream
takes its own time to reach its destination, the work of the insertion operator is simply to
throw something into the stream.) but the programme continues after the cout instruction
which takes its own time to work. With endl, you are forcing a �ush of the stream like
fflush(stdout) in C. This may be useful for debugging - often a programme crashes after
the cout instruction but you do not realise this because the cout has not caused a real
write by the time the fatal error occurs. This is also the reason why cerr is con�gured to
always �ush itself immediately.

1.4. SOME FEATURES OF C++ DIFFERENT FROM C 11

$./bhutum >�> bhutum.out

and the new lines get added to the bottom of bhutum.out .

This rough and ready method has one major disadvantage. All output

gets diverted - if there is a prompt for entering a particular value, it will also

be sent to the output �le and will not be shown. The way out is to use cerr

for such output. cerr does not get diverted - only cout does. However, if

we really want to divert cerr, use the syntax:

./bhutum 2> bhutum.err

and cerr will be redirected to bhutum.err. If you are really desperate:

./bhutum > bhutum.out 2> bhutum.err

will do the needful and oblige!

1.4.2.3 Stream I/O on �les

For handling �les you have to include <fstream> in the headers. Unlike cout

and cin, which are already opened, you have to explicitly create an instance

of type ifstream (for input) or ofstream (for output) with the name of the

�le as an argument. Once created, the objects can be used just like cin and

cout:

#include <iostream>

#include <fstream>

#include <cmath>

using namespace std;

int main(void)

{

12 CHAPTER 1. WHY C++ - ESSENTIAL DIFFERENCES FROM C

float x,y,z;

ifstream neoa(�halum.in�);

ofstream deoa(�halum.out�);

neoa >�> x >�> y;

cout <�< �x is � <�< x <�< � and y is � <�< y <�< endl;

z = x*y+sin(x);

deoa <�< z <�< endl;

return(0);

}

What if I want to keep neoa ready but actually open the �le later, say

after receiving a name10? This is the equivalent of the separate instructions

for creating a �le pointer and using fopen to open an actual �le in C :

ifstream neoa;

neoa.open(�halum.in�);

just now we do not need this.

10You will need this later when you do OOP.

Chapter 2

OOP and the concept of classes

and objects

2.1 Object oriented programmes (OOP)

With C++ three qualities characterise an object oriented programme:

1. Data encapsulation

2. Polymorphism

3. Inheritance

Instead of going into the rigorous de�nitions of these terms, let us try to

understand the basic idea. Polymorphism means `di�erent processes same

interface' or `overloading'. Consider the addition of two numbers. If they are

integers, their mode of storage is entirely di�erent from that of real numbers

(�oats) and their algorithm for addition is di�erent also. But when we use

the `+' operator, do we care to remember this detail? Similarly, when we

calculate a power of a number, the method for calculating an integral power

and a fractional power is completely di�erent. But we would like to use the

same name and syntax for pow(2,3) and pow(2,3.3). In C if we gave the

same name to two di�erent functions, an error would occur. But since the

arguments are of di�erent types, in principle it should be possible to under-

stand from the call itself which version is being invoked. The C++ compiler

13

14CHAPTER 2. OOP AND THE CONCEPTOF CLASSES ANDOBJECTS

is smart enough to do this and will call the correct version as long as there

is a way to tell them apart from their argument lists (types, number of argu-

ments, etc). This is called overloading a function (actually overloading the

name) or an operator and thus the requirement of polymorphism is satis�ed.

For the other two characteristics of OOP, we need the idea of classes.

2.1.1 Classes and objects

Let us recall the use of structures in C. At the �rst invocation a struct

initiates the declaration of a new data type which is often a composite of

many di�erent variables, often of di�erent types. Later invocations create

variables of that type. Let us study an example:

struct bhutum {

char name[30];

char gender;

int no_of_teeth_left;

float height;

};

int main(void)

{

struct bhutum bhombol;

strcpy(bhombol.name,�Arani Chakravarti�);

bhombol.gender = 'm';

bhombol.no_of_teeth_left = 3;

bhombol.height = 1.2;

return(0);

}

In C++ we can use this structure as it is, but we can also use a class:

2.1. OBJECT ORIENTED PROGRAMMES (OOP) 15

class bhutum {

public:

char name[30];

char gender;

int no_of_teeth_left;

float height;

};

int main(void)

{

bhutum bhombol;

strcpy(bhombol.name,�Arani Chakravarti�);

bhombol.gender = 'm';

bhombol.no_of_teeth_left = 3;

bhombol.height = 1.2;

return(0);

}

What are the di�erences? In the �rst case, the trouble of declaring that

bhombol is of type bhutum by appending a struct in front in the main pro-

gramme is eliminated1. We need not put a class in front of bhutum; once

the compiler �nds that there is no pre-de�ned data type called bhutum, it

will automatically search among the classes. The declaration bhutum bhom-

bol is technically called an instantiation of bhutum, or creating an instance

of bhutum and bhombol will be called an object of type bhutum.

The other di�erence lies in the public: directive. It says that the mem-

bers of the class declared below it can be accessed from outside the class.

Since the main programme is outside the class, this is what allows it to

modify the values inside bhombol. In structures, the members are public

1We have learnt how to circumvent this limitation in C by using a typedef.

16CHAPTER 2. OOP AND THE CONCEPTOF CLASSES ANDOBJECTS

by default. In a class, the members are private by befault, although it is

good practice to use the private: directive explicitly. If we used private

variables instead of public ones in the programme above, the compiler would

immediately signal an error. So a private variable is very safe inside a class,

no one can do anything to it! But does this not make this variable useless?

This is where the other great feature of classes comes in - a class is an

intelligent structure. A class can use its own variables and change them if

it likes! How does in do so? By using subroutines which become members

of the class just like the data and which can access all (including private)

variables in the class. Now if these subroutines are placed under the public:

directive, they can be called from the main programme and through them

the main programme may be granted access to the private variables. What

is the use of this round-about strategy? Let us see. Consider the following:

class bhutum {

private:

char name[30];

char gender;

int no_of_teeth_left;

float height;

public:

void set_name(char *cc)

{ strcpy(name,cc); }

char* get_name()

{ return(name); }

void set_gender(char c)

{ gender = c; }

char get_gender()

{ return(gender); }

2.1. OBJECT ORIENTED PROGRAMMES (OOP) 17

void set_teeth_num(int i)

{ no_of_teeth_left = i; }

int get_teeth_num()

{ return(no_of_teeth_left; }

void set_height(float h)

{ height = h; }

float get_height()

{ return(height); }

};

int main(void)

{

bhutum bhombol;

bhombol.set_name(�Arani Chakravarti�);

bhombol.set_gender('B');

bhombol.set_teeth_num(-5);

bhombol.set_height(-200.54);

cout <�< �The gender of � <�< bhombol.get_name() <�< � is � <�< bhom-

bol.get_gender() <�< �.� <�< endl;

return(0);

}

Now this programme will compile properly and on running will produce the

output:

The gender of Arani Chakravarti is B.

18CHAPTER 2. OOP AND THE CONCEPTOF CLASSES ANDOBJECTS

Note how the call to the member functions is just like accessing a mem-

ber of the bhombol object. Due to the presence of the brackets, the compiler

understands that this is really a subroutine call. Since the functions are of

type public, they can be called from the main programme and they, in turn,

are able to access the private members of the object. So far this is just doing

simple things in a complex manner but notice that the gender was set to B

which is meaningless. The values set for the number of teeth left and the

height are also absurd. But now let us rewrite the set_gender method:

void set_gender(char g)

{

if(g == 'm')

{

gender = g;

}

else

{

gender = 'f';

}

}

So the default gender now is f. Now we see the essence of data protec-

tion. Since the gender variable is accessed only through a programme, we

can put in as many checks and conditions on it as we want; so as far as we

are concerned, the gender member has been imbued with intelligence! In the

same way we can stipulate that a person cannot have a negative number of

teeth and we are not really expected to be 100 feet tall :) . All this and some

more characteristics2 constitute data encapsulation. C++ programmers gen-

erally start with a class and gradually keep adding capabilities to that class

as and when the need arises. If there is need to add another member with the

same name (same broad functionality) but with di�erent kind of arguments,

2wait till we reach inheritance!

2.1. OBJECT ORIENTED PROGRAMMES (OOP) 19

overloading (polymorphism) is used as in this example:

#include <iostream>

using namespace std;

class chhotoder_onko

{

private:

public:

void div(float a,float b)

{

if(b == 0)

{

cout <�< �Shunno diye bhaag hoinaa!� <�< endl;

}

else

{

cout <�< �The result is � <�< a/b <�< �.� <�< endl;

}

void div(int a,int b)

{

if(b == 0)

{

cout <�< �Shunno diye bhaag hoinaa!� <�< endl;

}

else

{

int quotient = a/b;

20CHAPTER 2. OOP AND THE CONCEPTOF CLASSES ANDOBJECTS

int remainder = a%b;

cout <�< �The quotient is � <�< quotient <�< � and the remainder is

� <�< remainder <�< �.� <�< endl;

}

void div(float a,int b)

{

if(b == 0)

{

cout <�< �Shunno diye bhaag hoinaa!� <�< endl;

}

else

{

cout <�< �The result is � <�< a/b <�< �.� <�< endl;

}

};

int main(void)

{

chhotoder_onko sum;

sum.div(1,2);

sum.div(1.0,2.0);

sum.div(1.0,2);

return(0);

}

In each case, the correct version of div will be called. This opens up im-

mense possibilities and prevents unintentional wrong use of code by others

in a team who may not be very familiar with the internal structure of the

subroutines.

2.1. OBJECT ORIENTED PROGRAMMES (OOP) 21

2.1.2 Constructors and destructors

Initialisation of variables is a very important part of most programmes. Start-

ing values for di�erent variables often have to be put in place, �les opened

for subsequent operations and numbers which are potential divisors have to

be set to non-zero values. Instead of doing these things from the main pro-

gramme, a class can be set up to initialise its variables automatically. For

this a public method is used, called the constructor. A constructor is declared

with a name which is the same as that of the class. It does not have a return

type but may have arguments. As soon as an instance of the class is created

(by declaring that some object is of that type), the constructor runs once by

itself3. Here is an example, where we also illustrate the utility of declaring a

�le stream before opening an actual �le:

#include <iostream>

#include <fstream>

using namespace std;

class pook

{

private:

float a[100],b[100];

ifstream pik;

int i;

public:

pook(char *fname) // constructor

{

3You may think that as the name of the constructor subroutine is the same as that of
the class, the declaration is also a call to the construtor.

22CHAPTER 2. OOP AND THE CONCEPTOF CLASSES ANDOBJECTS

i = 0;

pik.open(fname);

while(pik >�> a[i] >�> b[i] != NULL)

{

++i;

}

}

void show()

{

for(int j=0;j<i;++j)

{

cout <�< a[j] <�< "\t" <�< b[j] <�< "\n";

}

}

}; // end of class

int main(void)

{

pook pukai((char*)"in.dat");

pukai.show();

return(0);

}

Here we ask the constructor to open a �le (in.dat) and keep all the data

neatly organised in arrays just by creating an object named pukai. i is also

initialised to 1 and then the number of lines can be found by looking at it4.

Destructors are named with a tilde (`~') in front of the class name and do

not take arguments (CHECK). They run when the programme ends or the

object is destroyed. Thus, in the above case we could have written:

4If you want to acess i from the main programme then, of course, you need to have a
public process for returning i in the class itself. i is a private variable.

2.1. OBJECT ORIENTED PROGRAMMES (OOP) 23

~pook()

{

pik.close();

}

However this explicit closing is not generally needed in C++. In the case

of interfacing with machines, it is quite likely that a whole set of closing

down commands will have to be executed. Destructors come in handy in

such cases.

2.1.3 Operators

Let us construct a three-dimensional vector class. We will include two con-

structors, one for creation of an object of type vector with values preloaded

and the other for just creating the object without explicitly initialising its

contents. We will also include a method for vector addition and one for

printing out the values nicely:

#include <iostream>

using namespace std;

class vector

{

private:

float x,y,z;

public:

vector() // constructor for creating empty object

{ ; } // basically do nothing

24CHAPTER 2. OOP AND THE CONCEPTOF CLASSES ANDOBJECTS

vector(float a,float b,float c) // overloaded constructor for ini-

tialisation

{

x = a; y = b; z = c;

}

void show() // for a pleasing printout

{

cout <�< x <�< �i�;

if(y < 0)

{ cout <�< y <�< �j�; }

else

{ cout <�< �+� <�< y <�< �j�; }

if(z < 0)

{ cout <�< z <�< �k�; }

else

{ cout <�< �+� <�< z <�< �k�; }

}

vector add(vector v)

{

vector temp;

temp.x = x+v.x;

temp.y = y+v.y;

temp.z = z+v.z;

return(temp);

}

};

int main(void)

{

float a,b,c;

2.1. OBJECT ORIENTED PROGRAMMES (OOP) 25

cout <�< �Give me the first vector: �;

cin >�> a >�> b >�> c;

vector A(a,b,c); // uses the second constructor

cout <�< �Give me the second vector: �;

cin >�> a >�> b >�> c; // reuse the variables because the previous

// values have already been stored

vector B(a,b,c);

vector C; // uses the first constuctor - the memory is there but

not initialised

C = A.add(B); // vector addition

C.show();

return(0);

}

This is what happens - the add procedure of A is called with an argument of

B and after the addition is performed a temporary vector is returned which

is copied into C. Thus, we could have written B.add(A) also5.

Now consider the syntax A.add(B) . What if we had named the function

`+' instead of `add'6? The syntax would not be A.+(B) . If we could remove

the dot and the brackets, the syntax would be our familiar A+B. This is what

happens if you use the operator keyword:

vector operator +(vector v)

{

vector temp;

temp.x = x+v.x;

temp.y = y+v.y;

temp.z = z+v.z;

5But not in the case of subtraction!
6If you really try this the compiler will generate an error. The operator keyword is

necessary.

26CHAPTER 2. OOP AND THE CONCEPTOF CLASSES ANDOBJECTS

return(temp);

}

If you now simply write C = A+B in the main programme, vector addi-

tion would be accomplished using our familiar syntax! For cross product and

subtraction, we could write very similar procedures with the * and - oper-

ators. In the case of dot product, we need to use another operator symbol.

We cannot use anything we like, the list of allowed operators is �xed. Let us

use ^:

float operator ^(vector v)

{

return(x*v.x+y*v.y+z*v.z);

}

Only remember that we had to declare the return type as float because

that is what the dot product is - we have to equate it to a number and will

get an error if we try to equate it to a vector.

In a similar manner, you can create a complex class, matrix class (easy

with �xed dimension, di�cult with variable dimensions, but possible), classes

tied to group multiplication tables and anything that you can imagine.

2.1.4 Inheritance

What if I want to modify a class? I may want to add new functionality or

modify the way some already existant method works. The source code of the

original class may not be available. Even if it is available, if the class is big,

I will have to be very careful. I have to take care when I modify any private

member so that the change does not compromise the working of some other

method. I should not try to give an already existant name to a new variable

- this will result in an error. If I have written my programmes separately, as

soon as I incorporate the members in the old class, a huge list of errors will

appear due to repeated names. If I change the names in the declarations,

2.1. OBJECT ORIENTED PROGRAMMES (OOP) 27

I will have to be extra careful to get it changed in every instance of its use

in my programmes, because the compiler will not point this out to me any

more, there being already a variable with the old name in the original class.

If some of the methods in the old class work satisfactorily for me, I may not

want to spend time worrying whether my changes will a�ect them also. With

really big programmes, these problems become almost insurmountable. The

way out is through a beautiful feature of OOPs called inheritance.

I can declare that a new class is a descendant of the old class and inherits

its features. The declaration is very simple:

class new_class : public old_class

{

private:

.......

public:

.......

};

Now all the public methods of the original class automatically become public

members of the new class and can be called just as if they are already built

into the new class. However, the private members of the old class are not

visible to the new class and so, if the new class has private members of the

same name, they are actually completly di�erent variables. The old variables

are used by the functions that are inherited from the old class. I can add my

variables and methods as needed and the new derived class will simply be

the richer for it! If I want to change the way one of the old methods works, I

simply have to include a new method with the same name in the new class. It

will get precedence when called. If somewhere or the other I explicitly want a

call to the version of a method in the old class (which has a di�erent version

with the same name in the new class) I will have to add a scope resolution

directive: old_class::method() . Another class may be derived from this

new class. It will inherit features right down the line. This is commonly

used when a team of people work together : someone writes a base class and

28CHAPTER 2. OOP AND THE CONCEPTOF CLASSES ANDOBJECTS

someone else uses it with a derived class. In this way a whole hierarchy of

inheritance can be built up with gradual increase in the capabilities of the

later classes. It is also possible for a class to inherit directly from more than

one old class:

class khagen : public bhutum : public very_old : public not_so_old

However, multiple inheritance at the same level is discouraged by some au-

thors (WHY?).

Another keyword that is sometimes used in this context is protected. A

protected member acts like a public member, but if another class is derived

from this class, it becomes a private member in the new class (CHECK).

Chapter 3

Miscellaneous topics

3.1 Passing variables by reference

How are variables passed from the main programme to a subroutine or from

a calling subroutine to a called one? Basically through a stack. The calling

programme places the variables one after another in a stack and then calls the

subroutine. The subroutine `pop's these variables o� the stack, i.e. makes its

own copy and works on them. Thus there is much copying of values going on

during calls. This is called passing by value. There are other ways of sharing

values. Inside a class, all the processes can access the private or public

members. Global variables, which are declared outside the main programme

or subroutines, can be accessed by any process below the declaration point.

The name, of course, gets reserved and cannot be used for any other variable

by code appearing subsequently.

In order to reduce the overhead (often very large for large objects) associ-

ated with back-and-forth copying C++ allows passing variables by reference.

Closely related to pointers, this is essentially a way of handling variables

directly through their addresses. A reference variable is declared with an

ampersand (&) appended to its name, and because it is a reference to some

other variable, unlike pointers it has to be initialised at the time of declara-

tion with the actual variable:

29

30 CHAPTER 3. MISCELLANEOUS TOPICS

float x;

float &xr = x;

This is a nonparameter declaration. Once this is done, x and xr can be

used as the same variable to all intents and purposes. However, this does not

lead to any bene�t.

The real saving of resources occurs when references are used for passing

parameters. Consider the following programme:

#include <iostream>

using namespace std;

int main(void)

{

float x;

void bhutum(float&);

cout <�< "Give me x: ";

cin >�> x;

cout <�< "Before calling bhutum x is: " <�< x <�< endl;

bhutum(x);

cout <�< "After calling bhutum x is: " <�< x <�< endl;

return(0);

}

void bhutum(float &y)

{

y += 2.3;

cout <�< "This is bhutum, y = x+2.3, is: " <�< y <�< endl;

}

In this programme, bhutum is declared and de�ned to take a reference vari-

able. Even though it is called from the main programme with the variable x,

actually the reference is passed. Thus if x was a large class, it would not be

copied and would result in considerable improvement in performance. The

programme also demonstrates another important and often risky feature.

3.2. USING OPENMP FOR PARALLELIZATION 31

Since the actual variable is referenced, and not a local copy, the subroutine

changes the value of the calling parameter (which it calls y for its own use).

If this is desired, well and good, but if it is done inadvertently, actual variable

values will be changed and serious errors would occur. If the subroutine does

not change the value of the calling variable, there will be no problem. One

way to make sure that this does not happen is to use the const quali�er. If

we declare:

void bhutum(const float &);

and define:

void bhutum(const float &y)

{

...

}

the above programme will throw up a compiler error because we are try-

ing to change the constant parameter1y. Thus a better alternative to the

way the vector operator + is de�ned in our vector class would be:

vector operator +(const vector &v).

3.2 Using openmp for parallelization

Computer clock speeds have all but stopped increasing. The hardware has

become so complex that a very large amount of work is done using only a

few clock cycles. There is not much left to optimize on that score. By more

powerful computers, we basically mean more cores or more CPUs on the

same motherboard. This leads to the idea of parallelization.

1Do not declare x as const in the main programme; you will not be able to change its
value!

32 CHAPTER 3. MISCELLANEOUS TOPICS

3.2.1 Not all programmes can be parallelized

The idea of running a programme in pieces over a large number of computers

is particularly attractive. Thus, for instance, when two vectors are added to-

gether, the di�erent components do not depend on each other and therefore,

it is permissible to distribute the task among many computers, with each

doing a part of the work and the �nal result being collected back by a `mas-

ter node'. But in the case of solving di�erential equations numerically, the

output of the previous step becomes the input of the next, and the process

is inherently serial. How to parallelize problems is a most important ongoing

topic of research. Luckily, in physics a large variety of problems allow signif-

icant amounts of parallelism, e.g., tensor handling, Monte-Carlo simulations,

genetic and other search algorithms etc. All the supercomputers in use today

are basically large arrays of computers running in parallel.

3.2.2 MPI versus OpenMP

The most general mode for parallelism is by passing messages between di�er-

ent processors. A master node distributes arguments (through messages) to

di�erent cooperating nodes running their own copies of the same (sometimes

di�erent) programmes. The nodes do their work and send the results back

to the master through messages. Here each node is in e�ect a di�erent com-

puter and the messages are passed using di�erent protocols, often over the

network. MPI (Message Passing Interface) is a famous example of this kind

of parallelism. PVM (Parallel Virtual Machine) is an older system. How-

ever, for message passing to work, the code has to be written in a completely

di�erent way and network transmission takes time and hence the overhead

is substantial. Parallelism at a very low level of granularity2 cannot cause

any improvement with these systems and often results in great degradation

2In principle, an expression like y = sin(x)+ln(x) can be parallelised with one machine
calculating sin(x) and the other ln(x) at the same time. However, modern processors
are so fast with mathematics that the time required to transmit x to the two di�erent
nodes and then getting the results back may be hundreds of times greater than the time
taken by a node to calculate the individual terms. So jobs have to broken up into large
`chunks' for bene�t, each of which takes signi�cant CPU time.

3.2. USING OPENMP FOR PARALLELIZATION 33

of performance.

When many CPUs or cores sit on the same motherboard, they often

share memory. Thus, one processor only needs to write something into a

memory location for the other processors to be able to access it, eliminating

the lengthy procedure of message passing. With such systems, it makes

sense to parallelise portions within the same programme using the concept of

hyperthreading. OpenMP is a protocol and library for doing this and modern

C and C++ compilers include support for OpenMP as a default3.

3.2.3 Using OpenMP with gcc and g++

We have to use the #pragma directive. A pragma is a peculiar directive which

instructs a compiler (at times the linker) to handle a portion of code in a

particular manner. If the compiler does not support that pragma directive,

it simply ignores it and so the code still runs properly. Let us inspect the

following example:

#pragma omp parallel

cout <�< �halum\n�;

For compiling this, we have to append -fopenmp at the end of the com-

pilation command: g++ -O -Wall bhoot.C -o bhoot.x -fopenmp . If we

run this snippet of code, halum is printed multiple times, since each core

is handed this command! So this can be a way of �nding out the nuber of

cores. A better way would be to initialise an integer to zero and have the

code line just increment it. Each core would get hold of the same integer

(same memory location) and incerment it. Since the pragma omp directive

works on only one line (CHECK), a cout following this line would print out

the number of cores.

But this is terrible! We do not want our variables to have values according

3For very large programmes, the best approach is to use hyperthreading over CPUs
sharing the same memory and then use message passing to connect many such clusters
into a super cluster. Such programmes are called hybrid programmes and a considerable
part of the current activity related to supercomputing is going on in this �eld.

34 CHAPTER 3. MISCELLANEOUS TOPICS

to the number of cores available and the number of loops should not change

also. For this we can use the following syntax:

#pragma omp parallel for

for(i=0;i<=420;++i)

{

something here

}

In this case, the for loop will be broken up into segments of i ranges and the

cores asked to handle di�erent segments in parallel. Due to the presence of

the braces, the whole body of the loop will be considered one line and hence

the pragma will work on it. The process can be demonstrated spectacularly if

the loop body just prints the value of i. Each value of i will be printed only

once, but if there are more than one core present, they will do their work in

parallel, with di�erent speeds depending on their individual loads (CHECK

- do the cores multi-task in the middle of a for loop?) and as a result the

numbers will not be printed in sequence. The speed will be increased con-

siderably. Note that this procedure can be used only if the sequence does not

matter, i.e. the individual passes withing the loop are completely independent

of each other. Such a for loop (say some kind of initialisation or addition of

components of matrices) is parallelizable and will bene�t signi�cantly from

this simple pragma directive. In the wrong place this will wreak havoc. There

are other directives to allow greater control over the parallelization; we do

not discuss them here.

Index

<fstream>, 11

<iostream.h>, 8

<iostream>, 8

abstraction, 6

BASIC, 6

byte-codes, 6

C headers, 8

C++ binding, 7

cerr, 8

cin, 8

class, 14

classes, 14

classes tied to group multiplication ta-

bles, 26

complex class, 26

Constructors, 21

cout, 8

cross product, 26

Data encapsulation, 13

data encapsulation., 18

data protection, 18

declaring a �le stream before opening

an actual �le, 21

descendant, 27

Destructors, 22

destructors, 21

dot product, 26

doubt, 7, 22, 28, 33, 34

encapsulation, 6

extraction operator, 8

�ush, 10

fopen, 12

FORTRAN-77, 6

granularity, 32

high level language, 5

hybrid programmes, 33

hyperthreading, 33

ifstream, 11

Inheritance, 13, 26

Initialisation, 21

insertion, 9

insertion operator, 8

instance, 15

instantiation, 15

intelligent, 9

intelligent structure, 16

interfacing with machines, 23

iomanip, 9

Java, 6

35

36 INDEX

Java virtual machine, 6

matrix class, 26

Message Passing Interface, 32

messages, 32

MPI, 32

MPI versus OpenMP, 32

namespaces, 8

object, 15

object oriented programming, 5

OOP, 5

openmp, 31

operator keyword, 25

Operators, 23

overloading, 13, 19

parallelization, 31

Perl, 6

Polymorphism, 13

polymorphism, 19

portability, 6

POSIX, 7

pow, 13

pragma directive, 33

printf(), 8

private:, 16

public, 15

PVM (Parallel Virtual Machine), 32

Python, 6

scanf(), 8

shared memory, 33

stderr, 9

stdin, 9

stdout, 9

Stream I/O, 8

Stream I/O on �les, 11

struct, 14

Structured, 6

Tcl/Tk, 6

typedef, 15

Unstructured, 6

Using OpenMP with gcc and g++, 33

vector class, 23

versions of C++, 7

